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GLOBAL %

WHICH COUNTRIES ARE

WINNING THE Al RACE?

From helping artists express their creativity to automating th~
pawer requirements of a metropolis, artificial intelligence (&
the potential to reshape nearly every aspect of modern life.

nal are a Al but who
leading the way?

Context

* Al Race for
Performance

ML+AIl arXiv papers per month
TOP 10: NUMBER OF Al STARTUPS
BY COUNTRY, 2013-2022 (SUM)

Methodology  Only surveyed startups with at least $1.5M
n private investment were colinted.
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Figure 1. Number of papers published per months
memessms 110 Lhe arXiv categories of Al grow exponentially.
torers:  The doubling rate of papers per months 15 roughly 23
s the Important next 3 . = i :
months, which might lead to problems for publishing in
these fields, at some point. The categories are cs. AL

c=. LG cz.NE, and stat.ML.




Energy

e LLaMA-65B cost 173
tCO2eq

* "Al me to the moon...
Carbon footprint for
training GTP-3 same as
driving to our natural
satellite and back"

Training computation vs. parameters in notable Al systems, by domain

Computation is measured in total petaFLOP, which is 10*® floating-point operations® estimated from Al literature,
albeit with some uncertainty. Parameters are variables in an Al system whose values are adjusted during training
to establish how input data gets transformed into the desired output.
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Data source: Epoch (2023) OurWorldInData.org/artificial-intelligence | CC BY

Note: Parameters are estimated based on published results in the Al literature and come with some uncertainty. The authors expect the
estimates to be correct within a factor of 10.

1. Floating-point operation: A floating-point operation (FLOP) is a type of computer operation. One FLOP is equivalent to one addition, subtraction,
multiplication, or division of two decimal numbers.



Objectives

Select architectures balancing performance
& energy cost

* Model the search space
* Explore it (sampling)
* Energy cost and Performance Optimisation
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Neural Architecture Search (NAS)?
Rl
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NAS - General Worflow

* Explores a search space
 Evaluates each architecture

Performance
Estimation
Strategy

(train, prediction, ...) e
I SSAIl Bpace Search Strategy .
 Estimates performance A P
metric (accuracy, efficiency,...) cstimate of A

Goal: Find the optimal
architecture for a given task




NAS - Example:
NASBench-101

* Espace predifined

dense

global avg pool
stack 3

* 423K unique architectures
* Max 108 epochs downsample |, | &
- [ stack 2
CELLS
§ downsample
(3) ¢ stack 1

© @ == O
@ X1 pro X1 pnd
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State Of The Art

Auto-Keras: An Efficient Neural Architecture Search System (Haifeng Jin - 06/2018)

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size
(Xuanyi Dong - 01/2021)

NAS-Bench-101: Towards Reproducible Neural Architecture Search (Chris Ying -
02/2019)

Construction of Hierarchical Neural Architecture Search Spaces based on
Context-free Grammars (Simon Schrodi - 02/2024)

EA-HAS-Bench: Energy-Aware Hyperparameter and Architecture Search
Benchmark (Shuguang Dou - 02/2023)
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NAS - Problems

architecture) N
W residual block XN residual block x N|[ global
. Xg (stride=2) - (stride=2) = avg. poolj
( cell : cell ———3> Zzeroize 0
[Q/_,J ....... R_’_.} skip-connect

1x1 conv

dense
global avg pool
stack 3 cell
downsample 2[3
cell
stack 2 .5
[
downsample el
stack 1 2-1
conv stem

T

Pre-selection
(architecture)

cell cell 3%3 conv
J ....... L . —> 3X3 avg pool

predefined operation set )

Figure 1: Top: the macro skeleton of each architecture candidate. Bottom-left: examples of neural

cell with 4 nodes. Each cell is a directed acyclic graph, where each edge is associated with an
operation selected from a predefined operation set as shown in the Bottom-right.

Variability (limite
d)

Need for

(re)training
(or pre-trained)
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Convolution

Dense Dense Output

Convolution

+ Pooling
o Convolution
Convolution +
+ Pool-

Pool- mng
ing
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Example

input||conv max_pooling conv max_pooling conv |[fflatten|/dense dense |output

Convolution Dense Dense Output

Convolution
+ Pooling

Convolution
+
Pool-
ing



Why7 input conv max_pooling conv max_pooling conv flatten dense dense output
°

Domain Specific Language

)
* CNN architectures’ grammar Xte( vt
* Constraints support

* Validity check »(tend

How did we find the grammar rules ?

* Based on domain knowledge
* Based on SOTA
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CNNGEN

input conv max_pooling conv max_pooling conv flatten dense dense output

Xte?i Exampl
»{tend & —

Topologies Exploration

‘‘‘‘‘‘‘‘‘

» Space Exploration »

Hyperparameters
Exploration

o

Domain-
specific
Heuristics



Selecting Candidate Architectures

Search strategies

* Random search
* Evolutionary algorithms

Select model to train

* Performance/energy prediction
Deep Metric Learning
Embedding based on grammar
Distance (Levenshtein)

Graph
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Selecting Candidate Architectures

Search strategies

* Random search
* Evolutionary algorithms (Future work)

Select model to train

* Performance/energy prediction
* Beep-Metrictearning

* Embedding-based-on-grammar

. B ) htein

* Graph

20



State of the Art Performance Prediction
NAS Overview

 N-shot evaluation method: The number of trained
architectures >= the number of searched architectures. All
searched architectures are trained, and the focus is on
accelerating their training to reduce runtime compared to
Traditional Evaluation Method (TEM).
 Downscaled dataset methods => reduce the dataset scale
* Downscaled model methods => focus on reducing the model size

* Network morphism and learning curve extrapolation => reduce the
number of epochs



State of the Art Performance Prediction
NAS Overview

* N-shot evaluation method

 Few-shot evaluation method: The number of trained
architectures is less than the number of searched
architectures, but greater than one. The runtime is naturally
less than TEM due to fewer trained architectures.
* Performance predictor
e Population memory



State of the Art Performance Prediction
NAS Overview

* N-shot evaluation method
 Few-shot evaluation method

* One-shot evaluation method: Only one architecture is
trained, resulting in a runtime lower than TEM. The focus is
on training a single architecture.

* Path-based methods
* Gradient-based methods



State of the Art Performance Prediction
NAS Overview

* N-shot evaluation method
 Few-shot evaluation method
* One-shot evaluation method

e Zero-shot evaluation method: No architectures are trained,
resulting in an extremely low cost. This method requires no
training.

 Parameter-level methods
* Architecture-level methods



State of the Art Performance Prediction
NAS Overview

 N-shot evaluation method:

* Few-shot evaluation method
* Performance predictor
* Population memory

* One-shot evaluation method
e Zero-shot evaluation method



Predictor ¥4 : Grammar-
Based Predictor

input conv max _pooling conv max _pooling conv flatten dense dense output » Transformers
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Predictor 2/4 : TensorBoard Visualization P

redictor
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dictor 34 : Code-Based Predictor

numpy a

tensorflow
ten: , TensorBoard

ePooling2D,

. output_dir-
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S— X_input = X = Input([32,
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Predictor 4/4 : Decision Tree-
Based Predictor

Manually selected features:

O Parameters

O Layers
0 Epochs I oT
0 FLOP N
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Experimentation

* Generate 1300 architectures with CNNGen
* Train Dataset (CIFAR-10, CIFAR-100, f-MNIST)
* Architecture Dataset to train predictors (energy & performance)

Results

* Decision Tree-Based Predictor => best result for energy prediction
* Code-Based Predictor => best result for performance prediction

32



Future works - Neuro-evolution

* Automatic optimisation => genetic algorithms
0 JMetal
0 Genetic improvement on grammar instance

input conv max_pooling conv max_pooling/fconv flatten dense dense output

o
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Sum up

NAS - Example
* Espace predifined Do F —h @7}\:

* 423K unique architectures stack 3 ;e;l
* Max 108 epochs | downsample ] T

; cell

sack2 | || 55

| downsample ] olell

stack 1 2-1
\_*_/

| conv stem l

CNNGEN

input conv max_pooling cenv max_pooling conv flatten dense dense output

Xtet
dtend &

Example

Topologies Exploration

50
Space Exploration P o’ : X5
* .

Hyperparameters
Exploration
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Future works - Dataset Distillation

* Create SynD
0 Same performance
O Less cost

* Benchmark divers DD
technics (Energy cost)

* Train selected CNNGen
architectures

50K Real Training Images

ZEAS ST
A=Bieli

/ | Clc - R
4 = LR
Bzl 4

Dataset
Distillation

10 Sy nthetic Training Images

Q0000

‘Q"

’L‘J’L‘l’

‘Q"

Similar Test Performance
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The rise of artificial intelligence over the last 8 decades: As training SUSEIE
compulation has increased, Al systems have become more powerful

The color indicates the domain of the Al system: ®Vision ® Games ® Drawing @ Language ® Other

in Data

Shown on the vertical axis is the training computation
i Minerva: built in 2022 and trained on 2.7 billion petaFLOP-.
that was used to train the Al SVStemSA Minerva can solve complex mathematical problems at the college level. \\
PaLM: builtin 2022 and trained on 2.5 billion petaFLOP -

10 billion petaFLPP PaLM can generate high-quality text, explain some jokes, cause & effect, and more.

* Computation is measured in floating point operations (FLOP). GPT-3: 2020; 314 million petaFLOP —._
One FLOP is equival o one addition, subtraction, GPT-3 can produce high-quality text that is
multiplication, or division of two decimal numbers. often indistinguishable from human writing.
- DALL-E: 2021; 47 million petaFLOP
P 100 million petaFLOP DALL-E can generate high-quality images from written descriptions. ~ ®
The data is shown on a logarithmic scale, sothat i
s Ak il inerr . . NEQ: 2021; 1.1 million petaFLOP -
| ‘f‘r‘i’l’,';:ds"'l‘na‘r'“ﬁut";" f‘_‘;}"‘\"\:h’ﬁu‘ﬁmuw sa 100-fold Recommendation systems like Facebook’s NEO determine what you see on
\ - b 8 pLIES : your social media feed, online shopping, streaming services, and more.

1 million petaFLOP AlphaGo: 2016; 19 million petafLOP — ——
AlphaGo defeated 18-time champion Lee Sedol at the ancient and highly
complex board game Go. The best Go players are no longer human.

AlphaFold: 2020; 100,000 petaFLOP —
10,000 petaFLOP AlphaFold was a major advance toward solving the protein-folding problem in biology.

MuZero: 2019; 48,000 petaFLOP- —
MuZero is a single system that achieved superhuman performance at Go,
chess, and shogi (Japanese chess) — all without ever being told the rules.

100 petaFLOE AlexNet: 2012: 470 petaFLOP —~
A pivotal early “deep learning” system, or neural network with many layers, that
could recognize images of abjects such as dogs and cars at near-human level.

1 petaFLOP = 1 quadrillion FLOP NPLM o .
° L]
Decision tree [ ] L

L]

10 trillion FLOP TD-Gammon: 1992; 18trillionFLOP @ S5TMe °
TD-Gammon learned to play backgammon at a high
level, just below the top human players of the time. @ LeNet-5
i ® RNN for speech
llion FLOP
100 pilion. ELO NetTall: 1987; 81 billion FLOP @ @ ALVINN
NetTalk was able to learn to pronounce some English text by being given ® Zip CNN
text as input and matching it o phonetic transcriptions. Amang its many
limitations, it did not perform the visual recognition of the text itself.
1 billien FLOP ~Pandemcnium (Morse) ® System 11
Samuel Neural Checkers ®
3 ® Back-propagation
‘*Neocognitrorn: 380: 228 million FLOP i ]
illi A precursor of modern vision systems. It could recognize
10 million FLOP handwritten Japanese characters and a few other patterns.
@ Fuzzy NN
@ Perceptron Mark |: builtin 1957/58; 695,000 FLOP
100,000 FLOP Regarded as the first artificial neural network, it could visually distinguish cards marked on the left side
* from those marked on the right, but it could not learn ta recognize many other types of patterns.
® ADALINE: builtin 1960 and trained on around 9,900 FLOP
An early single-layer artificial neural network.
1,000 FLOP
® Theseus: built in 1950 and trained on around 40 floating point operations (FLOP)
10 FLOP Theseus was a small robotic mouse, developed by Claude Shannon,
that could navigate a simple maze and remember its course.
Pre Deep Learning Era Deep Learning Era
The first electronic computers Training computation grew in line with Moore's law, doubling roughly every 20 months. Increases in training computation
accelerated, doubling roughly

were developed in the 19405
every 6 months.

1940 1950 ‘ 1960 1970 1980 1990 ".“ 2000 2010 2020

" 1956: The Dartmouth workshop on Al, often 1997 Deep Blue beats world
seen as the beginning of the field of Al research chess champion Garry Kasparov

The data on training computation is taken from Sevilla et al. (2022) - Parameter, Compute, and Data Trends in Machine Learning.
It is estimated by the authors and comes with some uncertainty. The authors expect the estimates to be correct within a factor of two. Licensed under CC-BY by the authors
OurWorldinData.org - Research and data to make progress against the world's largest problems. Charlie Giattino, Edouard Mathieu, and Max Roser
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State of the Art Performance Prediction
NAS Overview

* N-shot evaluation method: The number of trained architectures is greater than or equal to the number
of searched architectures. All searched architectures are trained, and the focus is on accelerating their
training to reduce runtime compared to Traditional Evaluation Method (TEM).

* Downscaled dataset methods => reduce the dataset scale
* Downscaled model methods => focus on reducing the model size
* Network morphism and learning curve extrapolation => reduce the number of epochs

* Few-shot evaluation method: The number of trained architectures is less than the number of searched
architectures, but greater than one. The runtime is naturally less than TEM due to fewer trained
architectures.

* Performance predictor
* Population memory

* One-shot evaluation method: Only one architecture is trained, resulting in a runtime lower than TEM.
The focus is on training a single architecture.
* Path-based methods
» Gradient-based methods

» Zero-shot evaluation method: No architectures are trained (At = @), resulting in an extremely low cost.
This method requires no training.

* Parameter-level methods
* Architecture-level methods



N-shot evaluation method

* Downscaled dataset methods

* Reduced Training Time & Accelerated Exploration

* Using a smaller dataset, the training process becomes quicker and more efficient
(beneficial large and complex datasets)

» Allow to iterate more rapidly in architecture search and experimentation.

* Downscaled model methods

* Reduced Training Time & Accelerated Exploration

* Reducing the size of the models the training process becomes faster and more
efficient (beneficial large and complex models)

» Allow to iterate more rapidly in architecture search and experimentation.
* Network morphism
* Learning curve extrapolation



N-shot evaluation method

* Downscaled dataset methods
* Downscaled model methods

* Network morphism

* Accelerated Training Process

 Child network can inherit the weights and function of a fully-trained parent network
=> child network does not need to be trained from scratch and requires fewer epochs to
converge

* Learning curve extrapolation
* Reduced training time
* Predict the final performance of architectures trained for only a few epochs

* Incorporation of Partial Learning Curves:

 Partial learning curves captures valuable information about the architecture's learning
progress => accurate predictions of the architecture performance, even with limited
training epochs.



Few-shot evaluation method

» Performance predictor
* Reduced runtime
» Estimate the performance of architectures in the search space without actually training and
evaluating
» Resource efficiency

» Build a small architecture set (At) that represents the search space adequately => reduces the
number of architectures that need to be trained and evaluated

* Flexibility and adaptability
» Updated during the architecture search process, allowing them to incorporate new samples and

improve their prediction performance.
» Add new architectures to the training set and retrain the predictor, making them more flexible and

adaptable to changing search spaces.

* Population Memory

 Accelerated Fitness Evaluation
» Avoiding the repeated evaluation of the same architecture by reusing architectural information
that has appeared in previous populations(as a cache system)



One-shot evaluation method

* Path-based methods

» Accelerated performance evaluation

* Instead of training and evaluating each subnet individually, the weights of the subnets are directly extracted from the supernet,
and their performance is inferred on a validation dataset

* Weight decoupling

* To decouple the weights from the architecture and improve the
performance evaluation sampling strategies are employed during the supernet training

* Optimize the weights of different subnets in a
more balanced way, effectively alleviating the weight coupling problem and providing better performance estimation for the subnets.

* Gradient-based methods

* Decoupling of training and architecture search

* Separate the training of the supernet and the search for the architectures => allows for more
efficient optimization by jointly optimizing the supernet weights and architecture parameters

« Continuous relaxation of the search space

* Relax the discrete search space to be continuous => softmax function allows for the continuous representation of the
architecture choices

* Relaxation enables to efficiently search for optimal architectures
* Challenges

* Huge memory consumption

* Poor generalization

* Performance collapse



Zero-shot evaluation method

» Parameter-level methods

* Reduced computational cost

* Require a minibatch of data and a forward/backward propagation pass to calculate saliency indicators for
certain parameters.

« Don'tinvolve training the architecture, the computational requirements are significantly reduced.
 Utilization of network pruning techniques:

» Leverage saliency indicators (used in network pruning literature) measure the importance of parameters and
help identify unimportant ones

« Can evaluate the saliency of parameters and score the entire architecture based on the aggregated saliencies.

* Architecture-level methods

« Time-saving performance evaluation

» Evaluate the performance of architectures by measuring properties related to architecture performance
without training

 Theoretical basis and indicators

« Indicators as activation overlap, learnability, gradient behavior, expressivity, synaptic diversity, ... to judge the
properties of architectures and rank them

« Inaccurate => performance fluctuated dramatically among different tasks.
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