Faber Novel PhD grant

In this project (2018-2021) with the FaberNovel company (ex ZenGularity) we investigate the abstraction to facilitate the developmennt of hypermedia API

GEMOC Initiative

GEMOC is an open and international initiative that aims to coordinate and disseminate the research results regarding the support of the coordinated use of various modeling languages that will lead to the concept of the globalization of modeling languages.


The GLOSE project develops new techniques for heterogeneous modeling and simulation in the context of systems engineering. It aims to provide formal and operational tools and methods to formalize the behavioral semantics of the various modeling languages used at system-level. These semantics will be used to extract behavioral language interfaces supporting the definition of coordination patterns. These patterns, in turn, can systematically be used to drive the coordination of any model conforming to these languages. The project is structured according to the following tasks: concurrent xDSML engineering, coordination of discrete models, and coordination of discrete/continuous models. The project is funded in the context of the network DESIR, and supported by the GEMOC initiative.

ICT COST Action MPM4CPS (IC1404) 2014-2018

Truly complex, designed systems, known as Cyber Physical Systems (CPS), are emerging that integrate physical, software, and network aspects. To date, no unifying theory nor systematic design methods, techniques and tools exist for such systems. Individual (mechanical, electrical, network or software) engineering disciplines only offer partial solutions. Multi-paradigm Modelling (MPM) proposes to model every part and aspect of a system explicitly, at the most appropriate level(s) of abstraction, using the most appropriate modelling formalism(s). Modelling languages’ engineering, including model transformation, and the study of their semantics, are used to realize MPM. MPM is seen as an effective answer to the challenges of designing CPS. This COST Action promotes the sharing of foundations, techniques and tools, and provide educational resources, to both academia and industry. This is achieved by bringing together and disseminating knowledge and experiments on CPS problems and MPM solutions. Benoit Combemale is a member of the management committee.

Inria Associate Teams **ALE**: Agile Language Engineering (2017-2020)

Software engineering faces new challenges with the advent of modern software-intensive systems such as complex critical embedded systems, cyber-physical systems and the Internet of things. Application domains range from robotics, transportation systems, defense to home automation, smart cities, and energy management, among others. Software is more and more pervasive, integrated into large and distributed systems, and dynamically adaptable in response to a complex and open environment. As a major consequence, the engineering of such systems involves multiple stakeholders, each with some form of domain-specific knowledge, and with an increasingly use of software as an integration layer. Hence more and more organizations are adopting Domain Specific Languages (DSLs) to allow domain experts to express solutions directly in terms of relevant domain concepts. This new trend raises new challenges about designing DSLs, evolving a set of DSLs and coordinating the use of multiple DSLs for both DSL designers and DSL users. ALE will contribute to the field of Software Language Engineering, aiming to provide more agility to both language designers and language users. The main objective is twofold. First, we aim to help language designers to leverage previous DSL implementation efforts by reusing and combining existing language modules. Second, we aim to provide more flexibility to language users by ensuring interoperability between different DSLs and offering live feedback about how the model or program behaves while it is being edited (aka. live programming/modeling).

Keolis PhD grant

In this project (2018-2021) with the Keolis company we investigate the design of smart city transport simulators that combine top-down modelling and IA techniques. In this context, Jean-Marc Jézéquel acts as Ph.D advisor for Gauthier Lyan with David Gross-Amblard.

OKWind PhD grant

In this project with the OKWind company we investigate the design of solutions in favor of self-consumption for small industries or city districts. In this context, Olivier Barais acts as Ph.D advisor for Alexandre Rio with Yoann Maurel.

Orange PhD grant

In this project with the Orange company we investigate the security of user interfaces. In this context, Olivier Barais acts as Ph.D advisor for Youssou Ndaye with Arnaud Blouin.